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Abstract We show that D-branes in the Euclidean AdS3 can be naturally associated to the
maximally isotropic subgroups of the Lu–Weinstein double of SU(2). This picture makes
very transparent the residual loop group symmetry of the D-brane configurations and gives
also immediately the D-branes shapes and the σ -model boundary conditions in the de Sitter
T -dual of the SL(2,C)/SU(2) WZW model.

1 Introduction

An even-dimensional Lie group D equipped with a maximally Lorentzian biinvariant metric
is called a Drinfeld double1 [1, 2, 6] if it has at least two maximally isotropic Lie subgroups
G1 and G2, not related by an inner automorphism in D. It was shown in [6], that the Drinfeld
double D and an unipotent linear operator E on its Lie algebra D naturally define mutually
dual closed string σ -models on the targets D/G1 and D/G2, respectively. By considering
moreover an element d ∈ D and another maximally isotropic subgroup M of D, the quadru-
ple (D,E, d,M) defines a mutually dual pair of open string σ -models [7, 8]. In particular,
the D-brane submanifolds of the targets D/G1 and D/G2 are, respectively, the coset pro-
jections πG1 and πG2 of Md ⊂ D to D/G1 and D/G2.

We have recently shown [9], that for D = SL(2,C), G1 = SU(2), G2 = SL(2,R) and an
appropriate E , the corresponding bulk σ -model on D/G1 is nothing but the SL(2,C)/SU(2)

WZW model [10] describing strings in the Euclidean AdS3, while the dual model living on
D/G2 captures the string dynamics in the three-dimensional de Sitter space. In this paper,
we shall enlarge our discussion to incorporate the open string σ -models. We shall show,
in particular, that all AdS3 D-brane boundary conditions, recently considered by Ponsot,

C. Klimčík (�)
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1Here we commit a little abuse of terminology. In fact, for the standardly defined Drinfeld double [1, 2], it
must be moreover true that Lie(D) is the (vector space) direct sum Lie(G1) + Lie(G2). The latter condition
was even present in the original version of the Poisson–Lie T -duality [3–5]. However, as it was shown later
in [6], it can be released and the duality continues to take place.
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Schomerus and Teschner [11], can be obtained by choosing appropriately the data d and M

of the general construction indicated above. This means that we will be able to write down
immediately also de Sitter duals of the AdS3 D-branes.

From the technical point of view, this paper just makes explicit the general the-
ory of D-branes T-duality [7, 8] for the particular case of the SL(2,C)/SU(2) WZW
model. We believe that it is worth working out this example for two reasons: (1) the
SL(2,C)/SU(2) WZW model plays an important role in the AdS/CFT correspondence
therefore its duality structure should be of interest; (2) the model is conformal and has a
loop group symmetry hence it is so far the best candidate for testing the quantum status of
the Poisson–Lie T-duality.

The Poisson–Lie T-duality is relevant for the SL(2,C)/SU(2) WZW model because the
latter is Poisson–Lie symmetric [9]. It is less obvious, however, why the D-branes bound-
ary conditions considered by Ponsot, Schomerus and Teschner [11] fits in the framework
of the Poisson–Lie T-duality. In fact, the authors of [11] were guided by the requirement
of the residual loop group symmetry of the open string σ -model. This condition gave them
the shapes of the AdS3 D-branes as well as B-fields encoding the boundary condition. On
the other hand, the authors of [7, 8] were using the criterion of T-dualizability for finding
the shape of D-branes and boundary conditions on them. Remarkably, those very differ-
ently looking criterions give the same D-branes for the SL(2,C)/SU(2) WZW model. We
shall offer the explanation of this fact based on the association of the D-branes boundary
conditions to the maximally isotropic subgroups of the Drinfeld double.

In Sect. 2, we review the general concept of the open string σ -models with particular em-
phasis on the global characterization of the D-branes boundary conditions. Then we review
the Poisson–Lie T-duality in the presence of D-branes. In Sect. 3, we work out in detail the
case of the SL(2,C)/SU(2) WZW model. We consider the maximally isotropic subgroups
of the Drinfeld double SL(2,C), we derive from them the AdS3 D-branes studied by Ponsot,
Schomerus and Teschner and we describe the de Sitter duals of the AdS3 D-branes. Finally,
in Sect. 4, we explain the existence of their residual loop group symmetry.

2 Open Strings and D-Branes

2.1 Generalities

2.1.1. In the closed string case, the classical dynamics of nonlinear σ -model is completely
characterized by a metric dσ 2 = 1

2 Gijdxidxj and by a closed three-form H on a target
manifold T . When H = dB for some two-form B = 1

2 Bijdxi ∧ dxj , the latter is called the
B-field and the (Euclidean) action of the σ -model can be written as

S[x] = i

∫
dz̄ ∧ dz(Gij (x) + Bij )∂z̄x

i∂zx
j .

But also when H is cohomologically nontrivial (i.e. there is no globally defined potential B)
the classical model can be perfectly defined. Indeed, consider for definiteness the Riemann
sphere as the closed string world-sheet. Then the (Euclidean) σ -model action can be cast in
the WZW-like way:

S[x] = i

∫
∂Ω

dz̄ ∧ dzGij (x)∂z̄x
i∂zx

j + i

∫
Ω

x̃∗H. (1)
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Here Ω is a three-dimensional ball whose boundary ∂Ω is the Riemann sphere, the notation
x̃∗H means the pull-back of H to Ω via x̃, and the latter is the (extension) map from the
ball Ω to the target T whose boundary value x̃i |∂Ω is the σ -model configuration xi(z, z̄).
Of course, the classical action (1) can be defined only when the topology of the target T

permits to extend every map x on ∂Ω to the map x̃ on Ω . Moreover, this extension need
not be unique. Two different extensions can give a different value of the action S. Although
the classical dynamics (i.e. the field equations) is well defined and does not depend on this
ambiguity, the path integral quantization is impossible unless the ambiguity of the action
is 2πin with n an integer. If this is the case, the three-form H defines an integer-valued
cocycle in the singular cohomology of T .
2.1.2. The first complete discussion (covering also the case of the non-exact H ) of the open
string case was given in [8]. The σ -model is again characterized by the target T , the metric
dσ 2 and the closed three-form field H but also by a two-form α living on a submanifold P

of T . Needless to say, the submanifold P is referred to as a D-brane. The boundary of the
world-sheet has to lie in P and the restriction HP of H on P must admit α as its potential,
i.e. dα = HP .

It is instructive to write down the open string variational principle in the particular case
where the world-sheet is the disc |z| ≤ 1. We shall view this disc as the southern half of the
Riemann sphere and denote it as S↓. We shall need to denote also the northern hemisphere
as S↑. Let now xi(z, z̄) be a σ -model configuration defined on S↓ and having the boundary
values xi(|z| = 1) in the brane P ⊂ T . The action of this open string configuration is then
given by

S[x] = i

∫
S↓

dz̄ ∧ dzGij (x)∂z̄x
i∂zx

j + i

∫
Ω

x̃∗H − i

∫
S↑

x∗
P α. (2)

Here xi
P is an arbitrary map from S↑ to the brane P coinciding with the open string con-

figuration xi(z, z̄) on the common boundary of S↑ and S↓. In other words: xi(|z| = 1) =
xi

P (|z| = 1). The (extension) map x̃i from Ω to T must now fulfill the following boundary
conditions: x̃i |S↓ = xi and x̃i |S↑ = xi

P .
We note that the open string action principle involves two extensions: first we extend the

σ -model configuration xi(z, z̄) from the hemisphere S↓ to the whole sphere ∂Ω = S↓ ∪ S↑
by choosing xi

P on S↑ (in a sense we complete the sphere in the brane P ) and then we
extend xi ∪ xi

P to the map x̃i . The existence and ambiguity of these extensions depend on
the topology of T and P . The detailed discussion of this issue is given in [8]. Here we only
note three things: (1) for all choices of T and P considered in this paper, the existence of
the extensions will be guaranteed; (2) the existence of the extensions itself guarantees the
unambiguous definition of the field equations of the model (essentially due to the property
dα = HP ); (3) the non-unicity of the extensions is an important issue for the quantization.
Actually, the path integral quantization is impossible unless the ambiguity of the action is
2πin with n an integer. If this is the case, the pair (H,α) defines an integer-valued cocycle
in the relative singular cohomology of T with respect to P [8].

The reader might not be accustomed with writing the non-metric part of the open string
σ -model (2) as

i

∫
Ω

x̃∗H − i

∫
S↑

x∗
P α. (3)

Usually the people write instead

i

∫
S↓

x∗B + i

∫
|z|=1

x∗A, (4)
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where B is the two-form potential B such that dB = H and A is a one-form on the brane P .
The advantage of the formulation (4) is clear: we do not need to consider any extension x̃ or
xP whatsoever. However, the formulation (4) is less general since it can be derived from (3)
only when two requirements are satisfied: (1) the three-form H must be exact on the target
T (i.e. H = dB for some two-form B on T ); (2) the (closed) two-form (BP − α) must be
exact on the brane P (i.e. BP − α = dA for some one-form A on P ). Of course, here BP is
the restriction of the form B on the brane P . It is immediate to verify that (3) yields (4) if
these two conditions are satisfied.

It turns out that even in the cases when one can reduce the description (3) to (4), it is
sometimes better to work with the invariant description (3). For example, the symmetry
structure of the brane configuration is typically more transparent in the invariant formula-
tion (3).
2.1.3. Consider now a closed string background (T , dσ 2,H). As we already know, the open
string generalization can be defined, if we add two more data (P,α). Of course, there are
many possible quintuples (T , ds2,H,P,α) to consider. We may wish to impose further
restrictive conditions on these data, according to the aspects of the open string dynamics
that we wish to study. There are two examples of such additional conditions:

(i) In the framework of the WZW-like models, we wish that the part of the Kac–Moody
symmetry be preserved by the boundary conditions. Such requirement typically ensures
the preservation of the conformal symmetry of the open string model.

(ii) If the closed string model (T , dσ 2,H) admits a T-dual (T ′, dσ ′2,H ′), we require that
also the open string model (T , dσ 2,H,P,α) admits a T-dual (T ′, dσ ′2,H ′,P ′, α′).

Ponsot, Schomerus and Teschner [11] have looked for the D-brane boundary conditions sat-
isfying the criterion (i). In distinction to it, we shall organize our paper from the point of
view of the requirement (ii). In fact, if the bulk (T , dσ 2,H)-model is just the Poisson–Lie
dualizable σ -model on the target D/G1 (see Introduction), then there is a simple method
[7, 8] to generate the D-brane shapes P and the boundary conditions α fulfilling the re-
quirement (ii). In fact, take any element d of the corresponding Drinfeld double D and
any maximally isotropic subgroup M of D. We shall see in a while that the pair (M,d)

then completely determines the T-dualizable quintuple (T , dσ 2,H,P,α). In the case of the
SL(2,C)/SU(2) WZW model, there is another pleasing circumstance of this construction;
namely, the obtained T-dualizable quintuple (T , dσ 2,H,P,α) preserves the residual M-
loop group symmetry hence it automatically satisfies also the criterion (i). This observation
explains, why we obtain the same brane configurations in the Euclidean AdS3 as Ponsot,
Schomerus and Teschner [11].

2.2 D-Branes and Poisson–Lie T-Duality

2.2.1. This subsection is a brief review of the results2 [7–9]. It serves to keep complete the
logical skeleton of the paper. However, the reader wishing to enter technical details must
consult those papers. Consider the following first order action on the Drinfeld double D:

2Some conventions in this paper are changed with respect to our recent article [9]. For example, the relation

between the world-sheet coordinates σ, τ and z, z̄, the normalization of the line element dσ 2 etc. We did
those changes in order to have the same conventions as the paper [11] of Ponsot, Schomerus and Teschner.
This will permit us the direct comparison of our results with theirs.
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S = 1

2

∫
∂Ω

dσ ∧ dτ(∂τ ll
−1, ∂σ ll−1)D + 1

12

∫
Ω

(dll−1 ∧, [dll−1 ∧, dll−1])D

− 1

2

∫
∂Ω

dσ ∧ dτ(∂σ ll−1,E∂σ ll−1)D. (5)

Here l(σ, τ ) is a map from the world-sheet into the double and the world-sheet coordinates
are defined as

z = τ + iσ, z̄ = τ − iσ, ∂z = 1

2
(∂τ − i∂σ ), ∂z̄ = 1

2
(∂τ + i∂σ ).

The operator E : Lie(D) → Lie(D) is self-adjoint with respect to the (metric) bilinear form
(., .)D on D = Lie(D) and it holds E2 = ±Id . Actually, here we shall consider only the case
E2 = −Id , because it leads to the T-duality between σ -models with real Euclidean actions
[9].

For the moment, the action (5) is considered on a world-sheet without boundaries and
it encodes the closed strings Poisson–Lie T-duality between the targets T1 = D/G1 and
T2 = D/G2. Indeed, consider the coset D/Gj and parametrize3 it by the elements fj of D.
With this parametrization of D/Gj , we may parametrize the surface l(τ, σ ) in the double
as follows

l(τ, σ ) = fj (τ, σ )gj (τ, σ ), gj ∈ Gj (6)

and there is no summing over j . The action (5) then becomes

S = 1

2

∫
∂Ω

(f −1
j ∂τ fj , f

−1
j ∂σ fj )D + 1

12

∫
Ω

(dfjf
−1
j

∧, [dfjf
−1
j

∧, dfjf
−1
j ])D

+
∫

∂Ω

(∂σ gjg
−1
j , f −1

j ∂τ fj )D

− 1

2

∫
∂Ω

(f −1
j ∂σ fj + ∂σ gjg

−1
j ,Efj

(f −1
j ∂σ fj + ∂σ gjg

−1
j ))D, (7)

where Efj
= Ad

f −1
j

EAdfj
and we tacitly suppose the measure dσ ∧ dτ present in the for-

mula. Now we note that the expression (7) is Gaussian in the Lie(Gj )-valued variable
∂σ gjg

−1
j . The most useful strategy to solve it away is to pick up some basis Sa

j in Lie(Gj ),

write ∂σ gjg
−1
j = μjaS

a
j and integrate away μja . This gives

S = 1

2

∫
∂Ω

dz̄ ∧ dz(∂z̄fjf
−1
j , ∂zfjf

−1
j )D

+ 1

12

∫
Ω

(dfjf
−1
j

∧, [dfjf
−1
j

∧, dfjf
−1
j ])D

+ i

∫
∂Ω

dz̄ ∧ dz(f −1
j ∂z̄fj , S

a
j + iEfj

Sa
j )D(A−1

fj
)ab(S

b
j , f

−1
j ∂zfj )D, (8)

where

Aab
fj

= (Sa
j ,Efj

Sb
j )D. (9)

3If there exists no global section of this fibration, we can choose several local sections covering the whole
base space D/Gj .
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We note that in spite of the explicit presence of the imaginary unit in this formula, the
σ -model action (8) is always real. The duality is the equivalence of the models (8) for dif-
ferent j .

By the way, the σ -model like (8) can be associated to every maximally isotropic subgroup
of D provided the corresponding matrix Af is invertible. The target of such a σ -model is
the coset of the Drinfeld double by this subgroup.
2.2.2. We wish to consider the first order action (5) on the hemisphere (or disc) S↓. For this,
we choose some maximally isotropic4 subgroup M of D and an element d ∈ D and require
that l(z, z̄) ∈ Md for |z| = 1. The submanifold Md is the left M-orbit of the element d and
we shall call it a first order D-brane. The first and the third terms of the action (8) can be
perfectly defined as integrals over S↓ only. As it is discussed in [8] and in Sect. 2.1, giving
sense to the second term requires to choose a two-form αD on the first order brane Md such
that dαD is the restriction of the three-form 1/6(dll−1 ∧, [dll−1 ∧, dll−1])D on Md . In the
spirit of Sect. 2.1, the open string first order action then reads:

S = 1

2

∫
S↓

dσ ∧ dτ(∂τ ll
−1, ∂σ ll−1)D − 1

2

∫
S↓

dσ ∧ dτ(∂σ ll−1,E∂σ ll−1)D

+ 1

12

∫
Ω

(dll−1 ∧, [dll−1 ∧, dll−1])D − 1

2

∫
S↑

l∗αD. (10)

We ask the reader to excuse us some abuse of notation: we should have denoted by l the true
S↓-open string configuration, by lMd its S↑ extension in the first order brane Md and by l̃

the extension of both l and lMd to the ball Ω . Instead, we have used everywhere l and hoped
not to cause a confusion.

Now remark, that the D-invariance of the metric (., .)D means that not only M but
also Md is the isotropic surface in the double D. This fact implies that the restriction of
1/6(dll−1 ∧, [dll−1 ∧, dll−1])D on Md simply vanishes. Thus we fully define the open string
model (10) by choosing a closed form αD on Md . We make the simplest possible choice
and set

αD = 0.

Let G1 and G2 be two maximally isotropic subgroups of D. If the respective matrices Af

given by (9) are invertible for both choices of G1 and G2 we know that there is the bulk
T -duality between the model (8) on D/G1 and its counterpart on D/G2. This duality takes
place also in the open string case if we start with the action (10), the boundary condition
l(|z| = 1) ∈ Md and αD = 0.

We shall not repeat here the derivation of the mutually dual quintuples (Tj , dσ 2
j ,Hj ,Pj ,

αj ), j = 1,2 obtained from the first-order action (10). It has been done in [8] at it is based
on the following variant of the Polyakov–Wiegmann formula [12]:

(fg)∗WZW(l) = f ∗WZW(l) + g∗WZW(l) − d(f ∗(l−1dl) ∧, g∗(dll−1))D. (11)

Here

WZW(l) ≡ 1/6(dll−1 ∧, [dll−1 ∧, dll−1])D

4This means that the Lie(M) is the maximally isotropic subspace of Lie(D) with respect to the canonical
indefinite metric (., .)D .
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and the two maps from D to D: f (l) = f and g(l) = g are induced by the decomposition (6).
As usual, ∗ denotes the pull-back of the forms under the mappings to the group manifold D.
The result of the derivation is as follows:

(1) The manifold Tj is the coset D/Gj .
(2–3) The metric dσ 2

j and the Hj -field are given by the bulk σ -model (8). Explicitly:

ds2
j = 1

2
(f −1

j dfj , S
a
j )D(A−1

fj
)ab(S

b
j , f

−1
j dfj )D; (12)

Hj = i

2
d{(f −1

j dfj ,Efj
Sa

j )D ∧ (A−1
fj

)ab(S
b
j , f

−1
j dfj )D}

− i

12
(dfjf

−1
j

∧, [dfjf
−1
j

∧, dfjf
−1
j ])D.

(4) The D-brane Pj in D/Gj is the image of Md ⊂ D under the coset projection πGj
:

D → D/Gj .
(5) The form αj on Pj is given by

αj = i

2
(f −1

j dfj ,Efj
Sa

j )D ∧ (A−1
fj

)ab(S
b
j , f

−1
j dfj )D

− i

2
(f −1

j dfj
∧, dgj (fj )gj (fj )

−1)D. (13)

Recall that fj ∈ D are the representatives of the coset elements in D/Gj and gj (fj ) is any
map from Pj to Gj , such that fjgj (fj ) ∈ Md . The ambiguity in the definition of the map
gj : Pj → Gj does not influence the form αj . Moreover, the maps gj may exist only locally
on Pj . However, the form αj is defined globally on Pj and has to be glued from the maps
gj defined on local charts forming a covering of Pj .

3 D-Branes in the Euclidean AdS3

3.1 The Bulk Story

Here we apply the general results of Sect. 2 to the SL(2,C)/SU(2) WZW model. The Drin-
feld double D is the group SL(2,C) viewed as a real group and the biinvariant maximally
Lorentzian metric on it is naturally induced from the following non-degenerate invariant
symmetric bilinear form (., .)D on its Lie algebra D = sl(2,C):

(x, y)D = Im Tr(xy).

In other words, the indefinite metric is given by the imaginary part of the trace in the fun-
damental representation of sl(2,C). For the maximally isotropic subgroups G1 and G2 we
take, respectively, SU(2) and SLa(2,R). The superscript a means that the group SL(2,R) is
atypically embedded into SL(2,C) according to the following formula [9]:

(
μ iν

iρ λ

)
∈ SLa(2,R), μ, ν,ρ,λ ∈ R, μλ + νρ = 1.
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In fact, our embedding SLa(2,R) is conjugated to the standard one (real matrices with unit
determinant) by the following element of SL(2,C):

1

2

(
1 + i 1 + i

i − 1 1 − i

)
.

We recall that σ -models (8) on D/G and on D/G′ have the same target geometry if G

and G′ are conjugated in D. This means that we could equally well consider the standardly
embedded SL(2,R) as the maximally isotropic subgroup G2. Our atypical choice G2 =
SLa(2,R) is motivated by an effort to make as straightforward as possible the comparison
of our results with those of Ponsot, Schomerus and Teschner [11]. We also note that the
isotropy of the Lie algebras su(2) and sla(2,R) is clear because they are both the real forms
of SL(2,C).

Finally, we need the operator E . It is simply the multiplication by the imaginary unit in
sl(2,C) viewed as the real Lie algebra. Now we can write the first order action (10) in this
particular case:

S = 1

2

∫
∂Ω

dσ ∧ dτ Im Tr(∂τ ll
−1∂σ ll−1) + 1

12

∫
Ω

Im Tr(dll−1 ∧ [dll−1 ∧, dll−1])

− 1

2

∫
∂Ω

dσ ∧ dτ Im Tr(∂σ ll−1i∂σ ll−1). (14)

This expression can be cast even more simply as

S =
∫

∂Ω

dσ ∧ dz Im Tr(∂zll
−1∂σ ll−1) + 1

12

∫
Ω

Im Tr(dll−1 ∧ [dll−1 ∧, dll−1]).

We recall that the T-duality relates the σ -models living on SL(2,C)/SU(2) and on
SL(2,C)/SLa(2,R). Since we already know the general formulae (12) and (13), we need
only to decompose the world-sheet l(σ, τ ) in the double D = SL(2,C) as l = fjgj , j = 1,2
(cf. (6)). The section f2 was constructed in [9]:

f2 =
⎛
⎝ cosϑ + i L√

L2+1
sinϑ i 1√

L2+1
sinϑ

i 1√
L2+1

sinϑ cosϑ − i L√
L2+1

sinϑ

⎞
⎠

×
(

cosχ sinχ

− sinχ cosχ

)(
1 L

0 1

)
, (15)

where 0 ≤ ϑ ≤ π , 0 ≤ χ ≤ π/2 and L ∈ R.
For the case j = 1, we parametrize the coset SL(2,C)/SU(2) differently as in [9]. For the

sake of being notationally as close as possible to the paper [11], we take for f1 the following
section

f1 =
(

eφ/2 0
γ eφ/2 e−φ/2

)
, (16)

where φ ∈ R and γ ∈ C. Now we can directly calculate from (12) the σ -model metrics and
H -fields for the both cases j = 1,2:

dσ 2
1 = −1

4
(dφ2 + e2φdγ dγ̄ ), H1 = −1

2
e2φdφ ∧ dγ̄ ∧ dγ ; (17)
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dσ 2
2 = −1

4

(dL)2

L2 + 1
sin2 2χ sin2 2ϑ + (L2 + 1)(dχ2 + sin2 2χdϑ2)

+ cos 2ϑdLdχ − 1

2
sin 4χ sin 2ϑdLdϑ;

H2 = −4i
√

L2 + 1 sin 2χdL ∧ dχ ∧ dϑ. (18)

dσ 2
1 and H1 are equal to the metric and H -field of the SL(2,C)/SU(2) WZW model [10,

11]. The metric dσ 2
2 turns out to be the de Sitter metric written in appropriate coordinates

(cf. [9]). dσ 2
2 and H2 together define the de Sitter σ -model introduced in [9].

It is very convenient to introduce the following Hermitian matrices

h = f1f
†
1 , s = f2σ1f

†
2 , (19)

where σ1 = ( 0 1
1 0

)
is the Pauli matrix and † means the Hermitian conjugation of matrices. In

terms of h and s the σ -model backgrounds (17) and (18), can be respectively rewritten as

dσ 2
1 = −1

8
Tr(dhh−1dhh−1), (20a)

H1 = − 1

24
Tr(dhh−1 ∧ [dhh−1 ∧, dhh−1]), (20b)

dσ 2
2 = −1

8
Tr(dss−1dss−1), (21a)

H2 = − 1

24
Tr(dss−1 ∧ [dss−1 ∧, dss−1]). (21b)

In other words, the closed string SL(2,C)/SU(2) WZW action can be written as

S = − i

4

∫
∂Ω

dz̄ ∧ dz Tr(∂z̄hh−1∂zhh−1) − i

24

∫
Ω

Tr(dh̃h̃−1 ∧ [dh̃h̃−1 ∧, dh̃h̃−1]) (22)

and the closed string de Sitter action as

S = − i

4

∫
∂Ω

dz̄ ∧ dz Tr(∂z̄ss
−1∂zss

−1) − i

24

∫
Ω

Tr(ds̃s̃−1 ∧ [ds̃s̃−1 ∧, ds̃s̃−1]). (23)

Note that in (20–23) there is the full trace, not only its imaginary part. The original and the
dual model look pretty the same but we must realize that the determinant of s is (−1) and
that of h is 1. Moreover, the trace of h is positive.

The T-duality for the open strings depends on the choice of the first order D-branes Md .
We shall separately consider three cases: (1) M = SLa(2,R); (2) M = SU(2); (3) M = AN .

3.2 AdS2 Branes

We start with the case M = SLa(2,R). The possible first order D-branes are then the sub-
manifolds Md of SL(2,C) with d being a fixed element of SL(2,C). We do not make here
the most general choice of d ; instead, we consider only d having form

d =
(

1 0
1
2 c 1

)
, c ∈ R.
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The motivation for this particular choice is simple: when we switch from the first order de-
scription (10) to the second order one (22), it reproduces the AdS2 branes considered in [11].

Thus our first order D-branes are three-dimensional submanifolds of SL(2,C) of the
form

p = Md = SLa(2,R)d =
(

μ iν

iρ λ

)(
1 0
1
2 c 1

)
=

(
μ + 1

2 iνc iν

iρ + 1
2 λc λ

)
, (24)

where the real number c is fixed and μ,ν,ρ,λ ∈ R vary while respecting the constraint
μλ + νρ = 1.

3.2.1 The Target D/G1 = SL(2,C)/SU(2)

Now we want to find the shape of the corresponding D-brane P1 in the target D/G1 =
SL(2,C)/SU(2). As it is well-known, the coset SL(2,C)/SU(2) can be identified with the
group AN , whose elements are the matrices of the form (16). There is another natural way
to view this coset, namely, as a set of Hermitean matrices in SL(2,C) with a positive trace
and unit determinant. They can be parametrized as (cf. [11])

h = f1f
†
1 =

(
eφ eφγ̄

eφγ eφγ γ̄ + e−φ

)
), φ ∈ R, γ ∈ C. (25)

The canonical coset projection map h : SL(2,C) → SL(2,C)/SU(2) is simply given by

h(l) = ll†, l ∈ SL(2,C). (26)

It turns out that the restriction of the map h to the subgroup AN gives a diffeomorphism
between the subgroup AN of SL(2,C) and the space (25). Now we are ready to find the
shape of the D-brane P1 in D/G1. It is given by the coset projection of the first order D-
brane (24), or, in other words, by the Hermitian matrices of the form

h(p) =
(

ν2(1 + 1
4c2) + μ2 −iμρ + iνλ(1 + 1

4 c2) + 1
2 c

+iμρ − iνλ(1 + 1
4c2) + 1

2c λ2(1 + 1
4 c2) + ρ2

)
.

Comparing with the parametrization (25), we observe that the D-brane P1 in the coset
SL(2,C)/SU(2) is characterized by the equation

eφ(γ + γ̄ ) = c (27)

with a constant c. This is exactly the AdS2 brane considered in [11].
As we have said, the first order action (10) together with the choice of the first order

D-brane (24) (and αD = 0) determines the open string quintuple (T1, ds2
1 ,H1,P1, α1). So

far we have determined four its elements: the target T1 = SL(2,C)/SU(2) is parametrized
as in (25), then

ds2
1 = −1

4
(dφ2 + e2φdγ̄ dγ ), H1 = −1

2
e2φdφ ∧ dγ̄ ∧ dγ (17)

and the D-brane P1 is characterized by (27). It remains to determine α1. We use the formula
(13) and argue that the second term on its r.h.s. vanishes in this particular case. Indeed, we
can choose the map g1 equal to g1(f1) = 1. Hence we conclude

α1 = 1

4
e2φdγ ∧ dγ̄ . (28)
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It is important to note that the variables φ and γ in (28) are subject to the constraint (27).
Having obtained the quintuple (T1, dσ 2

1 ,H1,P1, α1), we can write down the action for
open strings. In the spirit of the discussion in Sect. 2.1, we pick up some globally defined
two-form potential B1 such that dB1 = H1. We know that the combination B1 −α1 on the D-
brane is always a closed form. In the present case it is even exact therefore it has a globally
defined potential A1 on P1. The non-metric part of the σ -model action (22) on the upper
half-plane can now be written as follows

i

∫
S↓

B1 + i

∫
|z|=1

A1.

Actually, in our situation, we can take

B1 = 1

4
e2φdγ ∧ dγ̄ .

Clearly, the difference B1 − α1 on the D-brane P1 vanishes hence A1 = 0. In other words,
we can cast the open string action without any boundary term as follows

S = − i

2

∫
S↓

dz̄ ∧ dz(∂zφ∂z̄φ + e2φ∂zγ ∂z̄γ̄ ). (29)

We stress again that this is the open string action. Nevertheless the integration over the
boundary |z| = 1 is missing due to the clever choice of the potential B1. The boundary
conditions that accompany the action (29) say that the boundary of the world-sheet lies in
the D-brane P1.

We could be happy that in the particular case of AdS2 branes in the Euclidean AdS3 the
open string action can be written without any extensions of the type xp and x̃ (cf. (2)).
On the other hand, the action (29) is expressed in the coordinates φ,γ and this fact makes
technically complicated to verify whether there is a residual loop group symmetry. Indeed,
the loop group action on the configuration φ,γ is given by a cumbersome formula and it
would be tedious to check the residual symmetry by working directly with (29). It turns out
that it is much easier to treat the symmetry issues in the (

∫
Ω

x̃∗H − ∫
S↑ x∗

P α)-representation
of the non-metric part of the open string action, because it can be done without the necessity
of introducing any coordinates on the target SL(2,C)/SU(2). Let us see how this works.

The points in the coset T1 = SL(2,C)/SU(2) are Hermitian 2d-matrices h with unit de-
terminant and positive trace. We wish to express the data dσ 2

1 ,H1,P1, α1 in terms of h. Here
is the answer

dσ 2
1 = −1

8
Tr(dhh−1dhh−1); (20a)

H1 = − 1

24
Tr(dhh−1 ∧ [dhh−1 ∧, dhh−1]); (20b)

P1 = {h;Tr(hσ1) = c}; (30a)

α1 = + c

16 + 4c2
Tr(σ1hσ1dh ∧ σ1dh), h ∈ P1. (30b)
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Here we recall that σ1 = ( 0 1
1 0

)
is the Pauli matrix. The reader can easily verify, that insert-

ing the parametrization (25) into the formulae (20a–20b) and (30a–30b), gives respectively
formulae (17) and (27), (28).

Thus we conclude the discussion of the AdS2 branes in the SL(2,C)/SU(2) background
by writing for them the open string action in the coordinate free way:

S = − i

4

∫
S↓

dz̄ ∧ dz Tr(∂z̄hh−1∂zhh−1)

− i

24

∫
Ω

Tr(dh̃h̃−1 ∧ [h̃h̃−1 ∧, dh̃h̃−1])

− i
c

16 + 4c2

∫
S↑

Tr(σ1hP σ1dhP ∧ σ1dhP ). (31)

Recall once more that hP (lying in the brane P1) is the S↑-extension of (the open string
configuration) h and h̃ is the extension of h∪hP to the interior of the ball Ω . We shall show
in Sect. 4, that the action (31) possesses a residual SLa(2,R) loop group symmetry.

3.2.2 The Target D/G2 = SL(2,C)/SLa(2,R)

In order to find the shape of the dual D-branes, it is convenient to switch from the para-
metrization (15) of the coset SL(2,C)/SLa(2,R) to the parametrization by the Hermitian
2d-matrices with determinant equal to (−1). They can be written as

s =
(

u w

w̄ v

)
, uv − w̄w = −1. (32)

Clearly, SL(2,C)/SLa(2,R) is nothing but the de Sitter space, if it is equipped with the
Minkowski metric

ds2
dS = dudv − dw̄dw

restricted to the surface uv − w̄w = −1. Two parametrizations are related by s = f2σ1f
†
2

(cf. (15)), that gives

1

2
(u + v) = L,

1

2
(u − v) = L cos 2χ + sin 2χ cos 2ϑ, (33a)

w = cos 2χ − L sin 2χ cos 2ϑ − i
√

L2 + 1 sin 2χ sin 2ϑ. (33b)

The reader may verify that, indeed, it holds uv − w̄w = −1.
The coset projection s : SL(2,C) → SL(2,C)/SLa(2,R) is then given by

s(l) = lσ1l
†. (34)

The shape of the dual de Sitter D-brane is now given by the projection of the first-order
D-brane (24):

s(p) =
(

ν2c 1 + iνλc

1 − iνλc λ2c

)
.
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If c = 0, then the dual D-brane is just a point w = 1, u = v = 0. If c �= 0, then the dual
D-brane P2 is two-dimensional and is characterized by the following relations

Re(w) = 1, sign(u) = sign(v) = sign(c). (35)

Thus the dual AdS2 brane has a conical shape. The remaining missing ingredient of the
open string quintuple is the form α2 on P2. It is obtained from (13) but the straightforward
calculation based on the coset parametrization (15) would be exceedingly tedious. Instead,
we shall use the fact that the form α2 is defined only on the brane P2. In this case, we can
parametrize the section f2 as follows

fP2 =
(

1 + i
2

√
uv 1

2u

1
2 v 1 − i

2

√
uv

)
, (36)

since it is easy to see that the coset projection map s gives

s(fP2) = fP2σ1f
†
P2

=
(

u 1 + i
√

uv

1 − i
√

uv v

)
. (37)

This is indeed the D-brane surface P2 because the matrix on the r.h.s. of (37) is the general
solution of the relations (35).

Using the parametrization (36), it is now easy to calculate the form α2 from the formula
(13). The result is simple:

α2 = i

4

du ∧ dv√
uv

. (38)

Of course, for c = 0 the brane reduces to a point and the form α2 automatically vanishes.
Thus we conclude the discussion of the de Sitter dual of the AdS2 branes by writing for

them the open string action in the global way (3):

S = − i

4

∫
S↓

dz̄ ∧ dz Tr(∂z̄ss
−1∂zss

−1)

− i

24

∫
Ω

Tr(ds̃s̃−1 ∧ [ds̃s̃−1 ∧, ∂s̃s̃−1]) + 1

4

∫
S↑

duP ∧ dvP√
uP vP

. (39)

Recall once more that

sP =
(

uP 1 + i
√

uP vP

1 − i
√

uP vP vP

)

is the S↑-extension of s to the brane P2 and s̃ is the extension of s ∪ sP to the interior of the
ball Ω . We shall show in Sect. 4, that the action (39) possesses a residual SLa(2,R) loop
group symmetry.

3.3 Spherical Branes

We continue with the case M = SU(2) embedded into SL(2,C) in the standard way:

(
α −β̄

β ᾱ

)
, α,β ∈ C, αᾱ + ββ̄ = 1.
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The possible first order D-branes are then the submanifolds Md of SL(2,C) with d being a
fixed element of SL(2,C). As in the previous case of the AdS2 branes, we do not make here
the most general choice of d ; instead, we consider only d having form

d =
(

eρ 0
0 e−ρ

)
, ρ ∈ R.

The motivation for this particular choice is simple: if we switch from the first order action
(10) to the second order one (22), it reproduces the spherical branes considered in [11].

Thus our first order D-branes are three-dimensional submanifolds of SL(2,C) of the
form

p =
(

eρα −e−ρβ̄

eρβ e−ρᾱ

)
, (40)

where the real number ρ is fixed and α,β ∈ C vary while respecting the constraint αᾱ +
ββ̄ = 1.

3.3.1 The Target D/G1 = SL(2,C)/SU(2)

Now we want to find the shape of the corresponding D-brane P1 in the target D/G1 =
SL(2,C)/SU(2). It is given by the coset projection (26) of the first order D-brane (40):

h(p) =
(

cosh2ρ − sinh2ρ(αᾱ − ββ̄) −2αβ̄sinh2ρ

−2ᾱβsinh2ρ cosh2ρ + sinh2ρ(αᾱ − ββ̄)

)
.

Note that the trace of h(p) is constant. Comparing with the parametrization (25), we thus
observe that the D-brane P in the coset SL(2,C)/SU(2) is characterized by the equation

Tr(h) = eφ(1 + γ̄ γ ) + e−φ = 2cosh2ρ (41)

with constant ρ. This is exactly the spherical brane considered in [11].
As we have said, the first order action (10) together with the choice of the first order

D-brane (40) (and αD = 0) determines the open string quintuple (T1, dσ 2
1 ,H1,P1, α1). So

far we have determined its four elements: the target T1 = SL(2,C)/SU(2) is parametrized
as in (25), then

ds2
1 = −1

8
Tr(dhh−1dhh−1) = −1

4
(dφ2 + e2φdγ̄ dγ ),

H1 = − 1

24
Tr(dhh−1 ∧ [dhh−1 ∧, dhh−1]) = −1

2
e2φdφ ∧ dγ̄ ∧ dγ

and the spherical D-brane P1 is characterized by (41).
It remains to determine α1. Of course, we use the general formula (13). The calculation

is a bit tedious but straightforward and it gives a remarkably simple result:

α1 = − cosh2ρ

8sinh22ρ
Tr(hdh ∧ dh), Tr(h) = 2cosh2ρ. (42)

It is crucial to stress that the form α1 in the formula (42) is defined only on the surface (41).
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Having obtained the quintuple (T1, ds2
1 ,H1,P1, α1), we can write down the action for

open strings attached to the spherical brane. The result is clearly

S = − i

4

∫
S↓

dz̄ ∧ dz Tr(∂z̄hh−1∂zhh−1)

− i

24

∫
Ω

Tr(dh̃h̃−1 ∧ [h̃h̃−1 ∧, dh̃h̃−1])

+ i
cosh 2ρ

8 sinh2 2ρ

∫
S↑

Tr(hP dhP ∧ dhP ). (43)

Recall once more that hP is the S↑-extension of h lying in the brane P1 and h̃ is the extension
of h ∪ hP to the interior of the ball Ω . The boundary conditions that accompany the action
(43) say that the boundary of the world-sheet lies in the D-brane (41). We shall show in
Sect. 4, that the action (43) possesses a residual SU(2) loop group symmetry.

3.3.2 The Target D/G2 = SL(2,C)/SLa(2,R)

It is straightforward to find the shapes of the de Sitter duals of the spherical D-branes. We
just apply the coset projection map (34) on the first order brane (40) and obtain

s(p) =
(−αβ − ᾱβ̄ α2 − β̄2

ᾱ2 − β2 +αβ + ᾱβ̄

)
.

Note that the resulting brane P2 can be characterized in the coordinate free way as

P2 = {s;Tr(s) = 0}.
In the parametrization (32), this means u + v = 0. Remembering that det s = −1 this gives
u2 + ww̄ = 1 which is the equation of the sphere. Thus the dual D-branes of the spherical
branes are also spherical.

The form α2 is given by the formula (13). We work in the coordinates χ,ϑ,L in which
the D-brane P2 is characterized by the equation L = 0. It turns out that for g2(f2) appearing
in (13) we can take a constant map

g2(f2) =
(

eρ 0
0 e−ρ

)
,

hence the second term in (13) vanishes. A direct calculation then shows that, on the surface
L = 0, the first term also vanishes. Thus we obtain

α2 = 0.

We conclude the discussion of the de Sitter dual of the spherical branes by writing for them
the open string action:

S = − i

4

∫
S↓

dz̄ ∧ dz Tr(∂z̄ss
−1∂zss

−1) − i

24

∫
Ω

Tr(ds̃s̃−1 ∧ [s̃ s̃−1 ∧, ds̃s̃−1]). (44)

Recall once more that sP is the S↑-extension of s to the brane P2 and s̃ is the extension of
s ∪ sP to the interior of the ball Ω . We shall show in Sect. 4, that the action (44) possesses
a residual SU(2) loop group symmetry.
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3.4 Euclidean AdS3 Branes

This case was not discussed in [11]. The reason is simple: the leading thread of our reasoning
in this section is T-duality, while Ponsot, Schomerus and Teschner have organized their paper
from the point of view of the residual symmetry of the D-brane configurations. They have
considered only the case were this symmetry was semi-simple. However, the Euclidean AdS3

branes, that we are going to study now, have a solvable residual symmetry. Consider thus
the remaining case M = AN embedded into SL(2,C) in the standard way (cf. (16)):

b =
(

eφ/2 0
γ eφ/2 e−φ/2

)
, φ ∈ R, γ ∈ C. (45)

The possible first order D-branes are then the submanifolds Md of SL(2,C) with d being
a fixed element of SL(2,C). As usual, we do not make here the most general choice of d ;
instead, we consider only the simplest possible d having the form

d =
(

1 0
0 1

)
.

Thus our first order D-branes are three-dimensional submanifolds of SL(2,C) of the form
p = b (cf. (45)), where φ ∈ R and γ ∈ C vary.

3.4.1 The Target D/G1 = SL(2,C)/SU(2)

Now we are ready to find the shape of the D-brane P1 in D/G1. It is given by the coset
projection (26) of the first order D-brane (45):

h(p) ≡ h(b) =
(

eφ eφγ̄

eφγ eφγ γ̄ + e−φ

)
, φ ∈ R, γ ∈ C. (25)

Thus we immediately observe that the D-brane P1 coincides with the whole target
SL(2,C)/SU(2). This is the reason why we call P1 the Euclidean AdS3 brane. In fact, what-
ever d we choose, it turns out that the corresponding D-brane P1 sweeps the whole target
space SL(2,C)/SU(2). However, the choice of d has an influence on the shape of the dual
D-brane P2 in SL(2,C)/SL(2,R).

As we have said, the first order action (10) together with the choice of the first order
D-brane (45) (and αD = 0) determines the open string quintuple (T1, ds2

1 ,H1,P1, α1). So
far we have determined its four elements: the target T1 = SL(2,C)/SU(2) is parametrized
as in (25), then

dσ 2
1 = −1

4
(dφ2 + e2φdγ̄ dγ ), H1 = −1

2
e2φdφ ∧ dγ̄ ∧ dγ

and the D-brane P1 coincides with the target T1. It remains to determine α1. We use the
formula (13) and argue that the second term on its r.h.s. vanishes in this particular case.
Indeed, we can choose the map g1(fj ) equal to g1(fj ) = 1. Hence we conclude

α1 = 1

4
e2φdγ ∧ dγ̄ .
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The open string action therefore reads

S = − i

2

∫
S↓

dz̄ ∧ dz(∂zφ∂z̄φ + e2φ∂zγ ∂z̄γ̄ ). (46)

The boundary conditions that accompany the action (46) say that the boundary of the world-
sheet is not constrained but can be located everywhere on the AdS3 target. We shall show in
Sect. 4, that the action (46) possesses a residual AN current symmetry.

3.4.2 The Target D/G2 = SL(2,C)/SLa(2,R)

The derivation of the T-dual quintuple (T2, dσ 2
2 ,H2,P2, α2) is straightforward. We have to

apply the coset projection map (34) to the first-order brane (45). We obtain

s(p) ≡ s(b) =
(

0 1
1 γ + γ̄

)
.

In the parametrization (32), the dual de Sitter brane P2 is therefore just a line w = 1, u = 0.
This means, in particular, that the two-form α2 on it automatically vanishes.

Thus we conclude the discussion of the de Sitter dual of the Euclidean AdS3 branes by
writing for them the open string action:

S = − i

4

∫
S↓

dz̄ ∧ dz Tr(∂z̄ss
−1∂zss

−1) − i

24

∫
Ω

Tr(ds̃s̃−1 ∧ [ds̃s̃−1 ∧, ds̃s̃−1]).

Recall once more that sP is the S↑-extension of s lying in the one-dimensional brane P2 and
s̃ is the extension of s ∪ sP to the interior of the ball Ω . We shall show in Sect. 4, that this
action possesses a residual AN loop group symmetry.

4 D-Branes and the Residual Loop Symmetry

In Sect. 3, we have described three types of branes in the SL(2,C)/SU(2) WZW model and
in its de Sitter dual. We have referred to them, respectively, as AdS2, spherical and Euclid-
ean AdS3 branes. We shall now argue that each type has a residual loop group symmetry
respecting the D-branes boundary conditions (P,α). We say residual, because there is even
bigger loop group symmetry of the bulk model. We shall first describe it and then discuss
the symmetry of various D-brane configurations.

4.1 Bulk Loop Group Symmetry

Consider antiholomorphic maps g(z̄) from the Riemann sphere without poles into the com-
plex group SL(2,C). The set of such maps form a loop group LSL(2,C). The LSL(2,C)

loop group symmetry of the first order bulk action

S = 1

2

∫
∂Ω

dσ ∧ dτ Im Tr(∂τ ll
−1∂σ ll−1) + 1

12

∫
Ω

Im Tr(dll−1 ∧ [dll−1 ∧, dll−1])

− 1

2

∫
∂Ω

dσ ∧ dτ Im Tr(∂σ ll−1i∂σ ll−1) (14)
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is the direct consequence of the Polyakov–Wiegmann formula (11). Indeed, it is the matter of
an easy check to see that the bulk action (14) does not change its value upon the replacing a
configuration l(z, z̄) by g(z̄)l(z, z̄). In particular, also the field equations following from (14)

l−1∂zl = 0

are manifestly LSL(2,C)-symmetric since a solution l(z̄) becomes clearly another solution
upon the transformation

l(z̄) → g(z̄)l(z̄), g(z̄) ∈ LSL(2,C). (47)

The LSL(2,C) symmetry transformation shows up also in the second order formalism. For
concreteness, consider the target SL(2,C)/SU(2) and the bulk σ -model (22)

S = − i

4

∫
∂Ω

dz̄ ∧ dz Tr(∂z̄hh−1∂zhh−1) − i

24

∫
Ω

Tr(dh̃h̃−1 ∧ [dh̃h̃−1 ∧, dh̃h̃−1]). (22)

Recall once more that h̃ is the extension of h to the interior of the ball Ω . First note that
from the first order configuration l we obtain the second order trajectory f1 by the (Iwasawa)
decomposition (6). This means (cf. (19)) that

h = f1f
†

1 = ll† (19b)

and the transformation (47) translates into

h(z, z̄) → g(z̄)h(z, z̄)g†(z). (48)

Then note that the Polyakov–Wiegmann formula (11) holds note only for the indefinite met-
ric (., .)D but also for every invariant bilinear form on Lie(D), in particular for Tr appearing
in (22). Using this fact, it is the matter of an easy calculation to see that the action (22) is
indeed invariant with respect to the loop group transformation (48).

In the de Sitter dual, the bulk action

S = − i

4

∫
S↓

dz̄ ∧ dz Tr(∂z̄ss
−1∂zss

−1) − i

24

∫
Ω

Tr(ds̃s̃−1 ∧ [ds̃s̃−1 ∧, ds̃s̃−1]) (23)

has the symmetry

s(z, z̄) → g(z̄)s(z, z̄)g†(z)

which originates from the first order transformation (47) by the coset projection map s =
lσ1l

† (cf. (34)).

4.2 Residual Loop Group Symmetry

4.2.1 First Order Formalism

Consider the first order brane Π = Md in the double D = SL(2,C), where M is some
maximally isotropic subgroup of D. We know that the open string first-order action reads
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(cf. (10))

S[l] = 1

2

∫
S↓

dσ ∧ dτ Im Tr(∂τ ll
−1∂σ ll−1) − 1

2

∫
S↓

dσ ∧ dτ Im Tr(∂σ ll−1i∂σ ll−1)

+ 1

12

∫
Ω

Im Tr(dl̃l̃−1 ∧, [dl̃l̃−1 ∧, dl̃l̃−1]), (49)

where l is the true open string configuration defined on S↓ whose boundary l(|z| = 1) takes
values in Md ⊂ D, lΠ is its S↑ extension into the first order brane Π = Md and l̃ is the
extension of l ∪ lΠ to the ball Ω .

The open string action (49) cannot be symmetric with respect to all LSL(2,C) loop trans-
formations l(z, z̄) → g(z̄)l(z, z̄) (|z| ≤ 1). Indeed, an arbitrary LSL(2,C) element g(z̄) do
not preserve the first-order brane boundary condition saying that l(|z| = 1) ∈ Md . On the
other hand, we can consider the residual subgroup LM0 ⊂ LSL(2,C) consisting of the ele-
ments g(z̄) satisfying g(|z| = 1) ∈ M and having the property that the induced mapping from
the equator of the Riemann sphere into the group M is homotopically trivial (of course, this
is always true if the group M is simply connected). The action l → ml of this residual sub-
group transforms one open string configuration l(z, z̄) into another one m(z̄)l(z, z̄) while
respecting the boundary conditions (ml)(|z| = 1) ∈ Md . It makes therefore sense to ask
whether the action (49) changes upon such a transformation.

In order to answer this question, we must extend the transformed configuration ml from
S↓ to S↑ in such a way that the S↑ piece lies in the first order brane Π = Md . This is easy,
we first consider the original extension lΠ of l and then any map mΠ : S↑ → M satisfying
mΠ(|z| = 1) = m(|z| = 1), where m(z̄) ∈ LM0 (the map mΠ always exists due to our as-
sumption about the homotopical triviality). Thus we set (ml)Π = mΠlΠ . In the analogous
way, the tilde-extension of the transformed configuration ml can be written as (̃ml) = m̃l̃

for an appropriate m̃. Now we replace l, lΠ and l̃ in (49) by ml, mΠlΠ and m̃l̃ and use the
Polyakov–Wiegman formula (11). The result is immediate:

S[ml] = S[l] − 1

2

∫
S↑

Im Tr(m−1
Π dmΠ ∧ dlΠ l−1

Π ). (50)

Let us argue that the second term in the r.h.s. of (50) vanishes therefore the action (49)
is invariant with respect to the residual loop group symmetry LM0. Indeed, this follows
from the isotropy of the Lie(M) with respect to the Im Tr and from the fact that both forms
m−1

Π dmΠ and dlΠ l−1
Π are Lie(M)-valued.

4.2.2 Second Order Formalism

In principle, the second order formalism follows from the first order one and, therefore,
we can consider that we have already proven in the precedent Sect. 4.2.1 the residual loop
group symmetry of all D-brane configurations considered in this paper. On the other hand,
the reader might wish to see the proof of the residual symmetry by working directly in
the second order formalism. In three cases out of six, we do not have a coordinate free
expression for the two-form α on the brane. Due to this circumstance, we have to work in
coordinates, the relevant formulae for the loop group action are quite complicated and we do
not detail the second-order symmetry demonstration here. However, in the three remaining
cases (including all brane configurations considered by Ponsot, Schomerus and Teschner
[11]) we do have the coordinate free expression for the form α and this fact makes possible to
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give the simple second-order proof of the residual loop symmetry. As an example, we prove
the residual SU(2) loop symmetry of the spherical brane in the SL(2,C)/SU(2) background.
Recall that its action principle reads

S = − i

4

∫
S↓

dz̄ ∧ dz Tr(∂z̄hh−1∂zhh−1)

− i

24

∫
Ω

Tr(dh̃h̃−1 ∧ [dh̃h̃−1 ∧, dh̃h̃−1]) + i
cosh 2ρ

8 sinh2 2ρ

∫
S↑

Tr(hP dhP ∧ dhP ). (43)

Recall once more that hP is the S↑-extension of h lying in the brane P1 and h̃ is the extension
of h ∪ hP to the interior of the ball Ω . The boundary conditions that accompany the action
(43) say that the boundary of the world-sheet lies in the D-brane (41).

We know from the first order analysis that the residual symmetry group is LSU(2), i.e. the
group of maps g(z̄) such that g(|z| = 1) ∈ SU(2). We shall denote the elements of LSU(2) as
m(z̄) and, as in the precedent subsection, to every m(z̄) we associate also the configurations
mΠ and m̃. We remark that m

†
Π = m−1

Π and we use the Polyakov–Wiegmann formula (11)
to calculate the transformed action

S[mhm†] = S[h] + i

4

∫
S↑

Tr{m−1
Π dmΠ ∧ (h−1

P dhP + dhP h−1
P )

− m−1
Π dmΠ ∧ hP m−1

Π dmΠh−1
P }

+ i
cosh 2ρ

8 sinh2 2ρ

∫
S↑

Tr(mΠhpm−1
Π d(mΠhpm−1

Π ) ∧ (mΠhpm−1
Π )).

At a first sight, it is not evident that the contributions from the second and third line cancel
each other. However, it is indeed true due to the identity

h−1
P = 2 cosh 2ρ − hP (51)

holding on the surface of the D-brane P1 = {h;Tr(h) = 2 cosh 2ρ}.
The identity (51) has its cousins for all other branes for which the form α can be written

in the coordinate free way. We list them in order to facilitate the work of the reader who
wishes to check the second order residual symmetry also for them. It is

(hσ1)
−1 = hσ1 − c, Tr(hσ1) = c,

for the AdS2 branes in the SL(2,C)/SU(2) WZW model and

s−1 = s, Tr(s) = 0

for the spherical branes in the de Sitter background. We recall that s and h are Hermitean
matrices, deth = 1, det s = −1 and Trh is positive.

5 Conclusions and Outlook

The possibility to formulate the SL(2,C)/SU(2) WZW model in the first order way (14)
was a fruit of the Poisson–Lie symmetry of this theory [9]. This property then leads to the
T-dualizability of the model with the T-dual being the de Sitter space. In this paper, we have
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applied the general theory [7, 8] of the D-branes Poisson–Lie T-duality to this particular ex-
ample. We stress, however, that our results may find applications also in the direct study of
the SL(2,C)/SU(2) WZW model without concentrating on the T-duality story. In particular,
we have been able to formulate the dynamics of the AdS2 brane in the coordinate indepen-
dent manner (31) which could render more transparent the geometrical structures involved
in this system. As it is well-known [13–22] several technical issues concerning string propa-
gation in the Lorentzian AdS3 can be Wick-continued to the Euclidean case treated here. It is
an interesting open question how the T-duality discovered in the Euclidean context manifests
itself in the Lorentzian one.
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9. Klimčík, C.: Yang–Baxter σ -models and dS/AdS T-duality. J. High Energy Phys. 0212, 051 (2002),

hep-th/0210095
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